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We describe a parallel algorithm for solving the time-independent 3d Schrödinger equation
using the finite difference time domain (FDTD) method. We introduce an optimized parall-
elization scheme that reduces communication overhead between computational nodes.
We demonstrate that the compute time, t, scales inversely with the number of computa-
tional nodes as t / (Nnodes)�0.95 ± 0.04. This makes it possible to solve the 3d Schrödinger
equation on extremely large spatial lattices using a small computing cluster. In addition,
we present a new method for precisely determining the energy eigenvalues and wavefunc-
tions of quantum states based on a symmetry constraint on the FDTD initial condition.
Finally, we discuss the usage of multi-resolution techniques in order to speed up conver-
gence on extremely large lattices.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Solving the 3d Schrödinger equation given an arbitrary potential Vð~rÞ is of great practical use in modern quantum physics;
however, there are only a handful of potentials for which analytic solution is possible. In addition, any potential that does not
have a high degree of symmetry, e.g. radial symmetry, requires solution in full 3d, making standard ‘‘point-and-shoot”
methods [1] for solving one-dimensional partial differential equations of little use. In this paper we discuss a parallel
algorithm for solving the 3d Schrödinger equation given an arbitrary potential Vð~rÞ using the finite difference time domain
(FDTD) method.

The FDTD method has a long history of application to computational electromagnetics [2–5]. In the area of computational
electromagnetics parallel versions of the algorithms have been developed and tested [6–12]. In this paper, we discuss the
application of parallelized FDTD to the 3d Schrödinger equation. The standard FDTD method has been applied to the 3d
Schrödinger equation by several authors in the past [23–29]. Here we show how to efficiently parallelize the algorithm.
We describe our parallel algorithm for finding ground and excited state wavefunctions and observables such as energy
eigenvalues, and root-mean-squared radii. Additionally, we introduce a way to use symmetry constraints for determining
excited state wavefunctions/energies and introduce a multi-resolution technique that dramatically decreases compute time
on large lattices. This paper is accompanied by an open-source release of a code that implements the algorithm detailed in
this paper. The code uses the Message Passing Interface (MPI) protocol for message passing between computational nodes.

We note that another popular method for numerical solution of the 3d Schrödinger equation is the Diffusion Monte Carlo
(DMC) technique, see [13–17] and references therein. The starting point for this method is the same as the FDTD method
applied here, namely transformation of the Schrödinger equation to imaginary time. However, in the DMC algorithm the
resulting ‘‘dynamical” equations are transformed into an integral Green’s function form and then the resulting integral equa-
tion is computed using stochastic sampling. The method is highly inefficient unless importance sampling [18,19] is used.
. All rights reserved.
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DMC is efficiently parallelized and there are several codes which implement parallelized DMC [20–22]. The method is similar
in many ways to the one presented herein; however, the method we use does not suffer from the fermion sign problem
which forces DMC to use the so-called ‘‘fixed-node approximation” [14]. In addition, although the DMC algorithm can, in
principle, be applied to extract properties of the excited states of the system most applications to date only calculate the
ground state wavefunction and its associated expectation values. The FDTD method described herein can extract both
ground and excited state wavefunctions.

The organization of the paper is as follows. In Sections. 2 and 3 we briefly review the basics of the FDTD method applied to
the 3d Schrödinger equation and derive the equations necessary to evolve the quantum mechanical wavefunction. In Section
4 we discuss the possibility of imposing a symmetry constraint on the FDTD initial condition in order to pick out different
quantum mechanical states. In Section 5 we describe our strategy for parallelizing the FDTD evolution equations and the
measurement of observables. In Section 6 we introduce an efficient method of using lower-resolution FDTD wavefunctions
as initial conditions for higher-resolution FDTD runs that greatly speeds up determination of high-accuracy wavefunctions
and their associated observables. In Section 7 we give results for a few potentials including benchmarks showing how the
code scales as the number of computational nodes is increased. Finally, in Section 8 we conclude and give an outlook for
future work.

2. Setup and theory

In this section we introduce the theory necessary to understand the FDTD approach for solving the time-independent
Schrödinger equation. Here we will briefly review the basic idea of the FDTD method and in the next section we will describe
how to obtain the discretized ‘‘equations of motion”.

We are interested in solving the time-independent Schrödinger equation with a static potential Vð~r; tÞ ¼ Vð~rÞ and a par-
ticle of mass m
1 The
differen

2 In t
therefo
Enwnð~rÞ ¼ bHwnð~rÞ; ð2:1Þ
where wn is a quantum–mechanical wavefunction that solves this equation, En is the energy eigenvalue corresponding to wn,
and bH ¼ ��h2r2=2mþ Vð~rÞ is the Hamiltonian operator. In order to solve this time-independent (static) problem it is effica-
cious to consider the time-dependent Schrödinger equation
i�h
@

@t
Wð~r; tÞ ¼ bHWð~r; tÞ ¼ � �h2

2m
r2 þ Vð~rÞ

" #
Wð~r; tÞ: ð2:2Þ
A solution to (2.2) can be expanded in terms of the basis functions of the time-independent problem, i.e.
Wð~r; tÞ ¼
X1
n¼0

anwnð~rÞe�iEnt ; ð2:3Þ
where {an} are expansion coefficients which are fixed by initial conditions (n = 0 represents the ground state, n = 1 the first
excited state, etc.) and En is the energy associated with each state.1

By performing a Wick rotation to imaginary time, s = it, and setting ⁄ = 1 and m = 1 in order to simplify the notation, we
can rewrite Eq. (2.2) as
@

@s
Wð~r; sÞ ¼ 1

2
r2Wð~r; sÞ � Vð~rÞWð~r; sÞ; ð2:4Þ
which has a general solution of the form
Wð~r; sÞ ¼
X1
n¼0

anwnð~rÞe�Ens: ð2:5Þ
Since E0 < E1 < E2 < � � � , for large imaginary time s the wavefunction Wð~r; sÞ will be dominated by the ground state wavefunc-
tion a0w0ð~rÞe�E0s. In the limit s goes to infinity we have
lim
s!1

Wð~r; sÞ � a0w0ð~rÞe�E0s: ð2:6Þ
Therefore, if one evolves Eq. (2.4) to large imaginary times one will obtain a good approximation to the ground state
wavefunction.2

This allows one to determine the ground state energy by numerically solving Eq. (2.4) for large imaginary time, and then
use this wavefunction to find the energy expectation value E0:
index n is understood to represent the full set of quantum numbers of a given state of energy En. In the degenerate case wn is an admixture of the
t degenerate states.
his context a large imaginary time is defined relative to the energy splitting between the ground state and the first excited state, e.g. eðE0�E1 Þs � 1;
re, one must evolve to imaginary times much larger than 1/(E1 � E0).
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E0 ¼
hw0jbHjw0i
hw0jw0i

¼
R

d3xw�0
bHw0R

d3xjw0j
2
: ð2:7Þ
However, the method is not limited to extraction of only the ground state wavefunction and expectation values. In the next
sections we will describe two different methods that can be used to extract, in addition, excited state wavefunctions.

3. The finite difference time domain method

To numerically solve the Wick-rotated Schrödinger Eq. (2.4) one can approximate the derivatives by using discrete finite
differences. For the application at hand we can, without loss of generality, assume that the wavefunction is real-valued as
long as the potential is real-valued. The imaginary time derivative becomes
@

@s
Wðx; y; z; sÞ � Wðx; y; z; sþ DsÞ �Wðx; y; z; sÞ

Ds
; ð3:1Þ
where Ds is some finite change in imaginary time. Similarly, the right hand side of Eq. (2.4) becomes
1
2
r2Wð~r; sÞ � Vð~rÞWð~r; sÞ � 1

2Dx2 ½Wðxþ Dx; y; z; sÞ � 2Wðx; y; z; sÞ þWðx� Dx; y; z; sÞ�

þ 1
2Dy2 ½Wðx; yþ Dy; z; sÞ � 2Wðx; y; z; sÞ þWðx; y� Dy; z; sÞ�

þ 1
2Dz2 ½Wðx; y; zþ Dz; sÞ � 2Wðx; y; z; sÞ þWðx; y; z� Dz; sÞ�

� 1
2

Vðx; y; zÞ½Wðx; y; z; sÞ þWðx; y; z; sþ DsÞ�; ð3:2Þ
where, in the last term, we have averaged the wavefunction in imaginary time in order to improve the stability of the algo-
rithm following Taflove [4] and Sudiarta and Geldart [45]. Note that if the potential V has singular points these have to be
regulated in some way, e.g. by ensuring that none of the lattice points coincides with a singular point. Assuming, for sim-
plicity, that the lattice spacing in each direction is the same so that a � Dx = Dy = Dz this equation can be rewritten more
compactly by defining a difference vector
D � 1
a2 ½1;�2;1�; ð3:3Þ
together with a matrix-valued bW field
bW � Wðx� a; y; z; sÞ Wðx; y� a; z; sÞ Wðx; y; z� a; sÞ
Wðx; y; z; sÞ Wðx; y; z; sÞ Wðx; y; z; sÞ

Wðxþ a; y; z; sÞ Wðx; yþ a; z; sÞ Wðx; y; zþ a; sÞ

264
375; ð3:4Þ
giving
1
2
r2Wð~r; sÞ � Vð~rÞWð~r; sÞ � 1

2

X3

i¼1

ðD � bWÞi � 1
2

Vðx; y; zÞ½Wðx; y; z; sÞ þWðx; y; z; sþ DsÞ�: ð3:5Þ
Rewriting Eq. (2.4) with Eqs. (3.1) and (3.5) gives the following update equation for W(x,y,z,s) in imaginary time:
Wðx; y; z; sþ DsÞ ¼ AWðx; y; z; sÞ þ BDs
2m

X3

i¼1

D � bW� �
i
; ð3:6Þ
where A and B are
A �
1� Ds

2 Vðx; y; zÞ
1þ Ds

2 Vðx; y; zÞ
; B � 1

1þ Ds
2 Vðx; y; zÞ

; ð3:7Þ
and we have reintroduced the mass, m, for generality. Evolution begins by choosing a random 3d wavefunction as the initial
condition. In practice, we use Gaussian distributed random numbers with an amplitude of one. The boundary values of the
wavefunction are set to zero; however, other boundary conditions are easily implemented.3 Note that during the imaginary
time evolution the norm of the wavefunction decreases (see Eq. 2.5), so we additionally renormalize the wavefunction during
the evolution in order to avoid numerical underflow. This does not affect physical observables.
note that parallel implementations of absorbing boundary conditions may present a bottleneck for the parallel calculation. Many implementations of
y matched layers exist [30–32]; however, only a few efficient parallel implementations exist with the maximum efficiency of tcompute / N�0:85

nodes achieved
e WE-PML scheme [33–37]. To the best of our knowledge the PML method has only been applied to unparallelized solution of the Schrödinger equation
.
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We solve Eq. (3.6) on a three-dimensional lattice with lattice spacing a and N lattice sites in each direction. Note that the
lattice spacing a and size L = Na should be chosen so that the states one is trying to determine (i) fit inside of the lattice vol-
ume, i.e. WRMS� L, and (ii) are described with a sufficiently fine resolution, i.e. WRMS	 a. Also note that since we use an
explicit method for solving the resulting partial differential equation for the wavefunction, the numerical evolution in imag-
inary time is subject to numerical instability if the time step is taken too large. Performing the standard von Neumann sta-
bility analysis [41] one finds that Ds < a2/3 in order achieve stability. For a fixed lattice volume a = L/N, therefore, Ds / N�2

when keeping the lattice volume fixed. The total compute time scales as ttotal / N3Ntime steps and assuming Ntime

steps / (Ds)�1, we find that the total compute time scales as ttotal / N5.
At any imaginary time s the energy of the state, E, can be computed via a discretized form of Eq. (2.7)
4 Of c
solving
E½W� ¼

P
x;y;zWðx; y; z; sÞ 1

2

P3
i¼1 D � bW� �

i
� Vðx; y; zÞWðx; y; z; sÞ

h i
P

x;y;zWðx; y; z; sÞ
2 : ð3:8Þ
Excited states are extracted by saving the full 3d wavefunction to local memory periodically, which we will call taking a
‘‘snapshot” of the wavefunction. After convergence of the ground state wavefunction these snapshots can be used, one by
one, to extract states with higher-energy eigenvalues by projecting out the ground state wavefunction, then the first excited
state wavefunction, and so on [29]. In principle, one can extract as many states as the number of snapshots of the wavefunc-
tion saved during the evolution. For example, assume that we have converged to the ground state w0 and that we also have a
snapshot version of the wavefunction Wsnap taken during the evolution. To extract the first excited state w1 we can project
out the ground state using
jw1i ’ jWsnapi � jw0ihw0jWsnapi: ð3:9Þ
For this operation to give a reliable approximation to w1 the snapshot time should obey ssnap	 1/(E2 � E1). One can use
another snapshot wavefunction that was saved and obtain the second excited state by projecting out both the ground state
and the first excited state.

Finally we mention that one can extract the binding energy of a state by computing its energy and subtracting the value of
the potential at infinity
Ebinding½w� ¼ E½w� � hwjV1jwihwjwi ; ð3:10Þ
where V1 � limr!1Vðx; y; zÞ with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
as usual. Note that if V1 is a constant, then Eq. (3.10) simplifies to

Ebinding[w] = E[w] � V1.

4. Imposing symmetry conditions on the initial wavefunction

Another way to calculate the energies of the excited states is to impose a symmetry constraint on the initial conditions
used for the FDTD evolution. The standard evolution calls for a random initial wavefunction; however, if we are solving a
problem that has a potential with sufficient symmetry we can impose a symmetry condition on the wavefunction in order
to pick out the different states required. For example, if we were considering a spherically symmetric Coulomb potential then
we could select only the 1s, 2s, 3s, etc. states by requiring the initial condition to be reflection symmetric about the x, y, and z
axes.4 This would preclude the algorithm finding any anti-symmetric states such as the 1p state since evolution under the Ham-
iltonian operator cannot break the symmetry of the wavefunction. Likewise to directly determine the 1p excited state one can
start by making the FDTD initial state wavefunction anti-symmetric about one of the axes, e.g. the z-axis. As we will show below
this provides for a fast and accurate method for determining the low-lying excited states.

Notationally, we will introduce two symbols, the symmetrization operator Si and the anti-symmetrization operator Ai.
Here i labels the spatial direction about which we are (anti-)symmetrizing, i.e. i 2 {x,y,z}. Although not required, it is implicit
that we perform the symmetrization about a plane with x = 0, y = 0, or z = 0, respectively. In practice these are implemented
by initializing the lattice and then simply copying, or copying plus flipping the sign, elements from one half of the lattice to
the other. In practice, we find that due to round-off error one should reimpose the symmetry condition periodically in order
to guarantee that lower-energy eigenstates do not reappear during the evolution.

5. FDTD parallelization strategy

Parallelizing the FDTD algorithm described above is relatively straightforward. Ideally, one would segment the volume
into M equal subvolumes and distribute them equally across all computational nodes; however, in this paper we will assume
a somewhat simpler possibility of dividing the lattice into ‘‘slices”. Our method here will be to start with a N3 lattice and slice
it along one direction in space, e.g. the x direction, into M pieces where N is divisible by M. We then send each slice of (N/
ourse, for a spherically symmetric potential a fully 3d method for solving the Schrödinger equation is unnecessary since one can reduce the problem to
a 1d partial differential equation. We only use this example because of its familiarity.



Fig. 1. A sketch of the partition of an original lattice into two sub-lattices that can be simulated on separate computational nodes. In this example, we show
the partitioning of an N3 = 83 lattice into M = 2 sub-lattices of 4 
 82. The third dimension is suppressed for clarity. Light grey shaded boxes indicate sites
that contain boundary value information and the dark grey shaded boxes indicate sites that contain information which must be synchronized between node
1 and node 2. White boxes indicate regions where the updated wavefunction value is stored.
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M) 
 N2 lattice to a separate computational node and have each computational node communicate boundary information
between nodes which are evolving the sub-lattices to its right and/or left. The partitioning of the lattice is indicated via a
2d sketch in Fig. 1. In practice, in order to implement boundary conditions and synchronization of boundaries between com-
putation nodes compactly in the code, we add ‘‘padding elements” to the overall lattice so that the actual lattice size is
(N + 2)3. The outside elements of the physical lattice hold the boundary value for the wavefunction. In all examples below
the boundary value of the wavefunction will be assumed to be zero; however, different types of boundary conditions are
easily accomodated. When slicing the lattice in order to distribute the job to multiple computational nodes we keep padding
elements on each slice so that the actual size of the slices is (N/M + 2) 
 (N + 2)2. Padding elements on nodes that share a
boundary are used to keep them synchronized, while padding elements on nodes that are at the edges of the lattice hold
the wavefunction boundary condition.

In Fig. 2 we show a flow chart that outlines the basic method we use to evolve each node’s sub-lattice in imaginary time.
In the figure each column corresponds to a separate computational node. Solid lines indicate the process flow between tasks
and dashed lines indicate data flow between computational nodes. Shaded boxes indicate non-blocking communications
calls that allow the process flow to continue while communications take place. As can be seen from Fig. 2 we have optimized
each lattice update by making the first step in each update iteration a non-blocking send/receive between nodes. While this
send/receive is happening each node can then update the interior of its sub-lattice. For example, in the two node case show
in Fig. 1 this means that node 1 would update all sites with an x-index between 1 and 3 while node 2 would update sites with
x-index between 6 and 8. Once these interior updates are complete each node then waits for the boundary communication
initiated previously to complete, if it has not already done so. Once the boundaries have been synchronized, the boundary
elements themselves can be updated. Going back to our example shown in Fig. 1 this would mean that node 1 would update
all sites with x-index of 4 and node 2 would update all sites with an x-index of 5.

Convergence is determined by checking the ground state binding energy periodically, e.g. every one hundred time steps,
to see if it has changed by more than a given tolerance. In the code, the frequency of this check is an adjustable parameter
and should be tuned based on the expected energy of the state, e.g. if the energy is very close to zero then convergence can
proceed very slowly and the check frequency should be correspondingly larger. Parametrically the check frequency should
scale as 1/E0.

For computation of observables each computational node computes its contribution to the observable. Then a parallel call
is placed that collects the local values computed into a central value stored in computational node 1. Then node 1 broadcasts
the value to the other nodes so that all nodes are then aware of the value of the particular observable. For example, to com-
pute the energy of the state as indicated in Eq. (3.8) each computational node computes the portion of the sum correspond-
ing to its sub-lattice and then these values are collected via a parallel sum operation to node 1 and then broadcast out to each
node. Each node can then use this information to determine if the wavefunction evolution is complete. We note that the nor-
malization of the wavefunction is done in a similar way with each node computing its piece of the norm, collecting the total
norm to node 1, broadcasting the total norm to all nodes, and then each node normalizes the values contained on its sub-
lattice. In this way computation of observables and wavefunction normalization is also parallelized in our approach.

5.1. Scaling of our 1d partitioning

In most settings computational clusters are limited by their communication speed rather than by CPU speed. In order to
understand how things scale we introduce two time scales: Dsu which is the amount of time needed to update one lattice



Fig. 2. Flow chart showing a sketch of our parallel algorithm. Each column represents a distinct computational node. Solid lines are process flow lines and
dashed lines indicate data flow. Shaded boxes indicate non-blocking communications calls that allow the process flow to continue while communications
take place.
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site and Dsc which is the amount of time needed to communicate (send and receive) the information contained on one lattice
site. Typically Dsu < Dsc unless the cluster being used is on an extremely fast network. Therefore, the algorithm should be
optimized to reduce the amount of communications required. For the one-dimensional partitions employed here
su ¼
N

N1d
nodes

 !
N2Dsu;

sc ¼ 2N2Dsc; ð5:1Þ
where N1d
nodes is the number of 1d slices distributed across the cluster and the factor of 2 comes from the two surfaces which

must be communicated by the internal partitions. For the calculation not to have a communications bottleneck we should
have sc < su. Using (5.1) we find that this constraint requires
N1d
nodes <

1
2

Dsu

Dsc

� �
N: ð5:2Þ



M. Strickland, D. Yager-Elorriaga / Journal of Computational Physics 229 (2010) 6015–6026 6021
In the benchmarks section below we will present measurements of Dsu and Dsc using our test cluster. We find that
Dsu � Dsc/5. Using this, and assuming, as a concrete example, a lattice size of N = 1024 we find N1d

nodes K 102. For clusters with
more than 102 nodes it would be more efficient to perform a fully 3d partitioning. In the case of a fully 3d partitioning one
finds that the limit due to communications overhead is N3d

nodes K 39768.

6. The multi-resolution technique

If one is interested in high-precision wavefunctions for low-lying excited states, an efficient way to do this is to use a mul-
ti-resolution technique. This simply means that we start with a random wavefunction on small lattice, e.g. 643, and use the
FDTD technique to determine the ground state and first few excited states and save the wavefunctions, either in local mem-
ory or disk. We can then use a linear combination of the coarse versions of each state as the initial condition on a larger lat-
tice, e.g. 1283, while keeping the lattice volume fixed. We can then ‘‘bootstrap” our way up to extremely large lattices, e.g. on
the order of 10243 ? 20483, by proceeding from low resolution to high resolution. In the results section we will present
quantitative measurements of the speed improvement that is realized using this technique.

7. Results

In this section we present results obtained for various 3d potentials and benchmarks that show how the code scales with
the number of computational nodes. Our benchmarks were performed on a small cluster of 4 servers, each with two quad-
core 2 GHz AMD Opteron processors. Each server can therefore efficiently run eight computational processes simultaneously,
allowing a maximum of 32 computational nodes.5 The servers were networked with commercial 1 Gbit/s TCP/IP networking.
For the operating system we used 64 bit Ubuntu Server Edition 8.10 Linux.

7.1. Implementation

In order to implement the parallel algorithm we use a mixture of C/C++ and the Message Passing Interface (MPI) library
for message passing between computational nodes [42]. The servers used the OpenMPI implementation of the MPI API.6 The
code itself is open-sourced under the Gnu General Public License (GPL) and is available for internet download via the URL in Ref.
[43].

7.2. General benchmarks

In this section we present data for the scaling of the time of one iteration and the time for communication on a N3 = 5123

lattice. As discussed in Section 5.1 we expect to see ideal scaling of the code as long as communication time is shorter than
the update time, i.e. sc < su. In Fig. 3(a) we show the time to complete one iteration as a function of the number of compu-
tational nodes on a log–log axis along with a linear fit. The linear fit obtained gives siteration / N�0:95�0:02

nodes . In addition, in
Fig. 3(b) we show a comparison of the full time for each iteration with the amount of time needed to communicate a lattice
site’s information (in this case the local value of the wavefunction). In both Fig. 3(a) and (b) the error bars are the standard
error determined by averaging over 10 runs, re ¼ r=

ffiffiffiffi
N
p

, where r is the standard deviation across the sampled set of runs
and N is the number of runs.

As can be seen from Fig. 3(b) using a 5123 lattice the algorithm performs well up to Nnodes = 64 at which point the com-
munication time becomes equal to the iteration time. For Nnodes > 64 we would see a violation of the scaling above due to
communication overhead. Note that this is rough agreement with our estimate from Sectin 5.1 which, for 5123 lattice pre-
dicts the point where communications and update times to be equal to be Nnodes � 51. Note that in Fig. 3(b) the increase in
communication times as Nnodes increases is due to the architecture of the cluster used for the benchmarks which has eight
cores per server. If Nnodes <= 8 then all jobs run on one server, thereby decreasing the communications overhead. In the next
section, we will present benchmarks for different potentials in order to (a) confirm the scaling obtained above in specific
cases and (b) to verify that the code converges to the physically expected values for cases which are analytically solvable.

7.3. Coulomb potential benchmarks

We use the following potential for finding the Coulomb wavefunctions
5 Due
6 The
VðrÞ ¼
0; r < a;

� 1
r þ 1

a ; r P a;

(
ð7:1Þ
where a is the lattice spacing in units of the Bohr radius and r is the distance from the center of the 3d lattice. The constant of
1/a is added for r P a in order to ensure that the potential is continuous at r = a. This is equivalent to making the potential
to a server upgrade during publishing we were able to extend to 64 computational nodes in the general benchmark section.
code was also tested against the MPICH implementation of the MPI API with similar results.
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constant for r 6 a and shifting the entire potential by a constant which does not affect the binding energy. Analytically, in our
natural units the binding energy of the nth state is En = �1/(2(n + 1)2) where n P 0 is the principal quantum number labeling
each state. The ground state therefore has a binding energy of E0 = �1/2 and the first excited state has E1 = �1/8, etc. Note
that to convert these to electron volts you should multiply by 27.2 eV.

In Fig. 4 we show the amount of time needed in seconds to achieve convergence of the ground state binding energy to a
part in 106 as a function of the number of computational nodes for Nnodes 2 {4,8,16,32} on a log–log plot. For this benchmark
we used a lattice with N3 = 5123, a constant lattice spacing of a = 0.05, a constant imaginary time step of Ds = a2/
4 = 6.25 
 10�4, and the particle mass was also set to m = 1. In order to remove run-by-run fluctuations due to the random
initial conditions we used the same initial condition in all cases. In Fig. 4 the error bars are the standard error determined by
averaging over 10 runs, re ¼ r=

ffiffiffiffi
N
p

, where r is the standard deviation across the sampled set of runs and N is the number of
runs. In all cases shown the first two energy levels obtained were E0 = �0.499 and E1 = �0.122. This corresponds to an accu-
racy of 0.2% and 2.4%, respectively. In Fig. 4 the extracted scaling slope is close to 1 indicating that the compute time in this
case scales almost ideally, i.e. inversely proportional to the number of computing nodes. Note that the fit obtained in Fig. 4
has a slope with magnitude greater than 1 indicating scaling which is better than ideal; however, as one can see from the
figure there is some uncertainty associated with this fit.

7.4. 3d Harmonic oscillator benchmarks

We use the following potential for finding the 3d harmonic oscillator wavefunctions
VðrÞ ¼ 1
2

r2; ð7:2Þ
where r is the distance from the center of the 3d lattice.
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In Fig. 5 we show the amount of time needed in seconds to achieve convergence of the ground state binding energy to a
part in 106 as a function of the number of computational nodes for Nnodes 2 {4,8,16,32}. For this benchmark we used a con-
stant lattice spacing of a = 0.02, a constant imaginary time step of Ds = a2/4 = 1.0 
 10�4, and a N3 = 5123 dimension lattice so
that the box dimension was L � aN = 10.24. In Fig. 5 the error bars are the standard error determined by averaging over 10
runs, re ¼ r=

ffiffiffiffi
N
p

, where r is the standard deviation across the sampled set of runs and N is the number of runs. The particle
mass was also set to m = 1. In order to remove run-by-run fluctuations due to the random initial conditions we used the same
initial condition in all cases. In all cases the ground state energy obtained was E0 = 1.49996 corresponding to an accuracy of
0.0026%. In Fig. 5 the extracted scaling slope is 0.91 meaning that the compute time scales as tcompute / N�0:91

nodes in this case.
This is a slightly different slope than in the Coulomb potential case. This is due to fluctuations in compute time due to server
load and sporadic network delays. The scaling coefficient reported in the conclusions will be the average of all scaling coef-
ficients extracted from the different potentials detailed in this paper.
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Fig. 5. Compute time versus number of computational nodes on a log–log plot for the 3d harmonic oscillator potential specified in Eq. (7.2). The dashed line
is a linear fit to the data. Scaling exponent indicates that, in this case, the compute time scales as tcompute / N�0:91

nodes . Error bars are the standard error
determined by averaging over 10 runs, re ¼ r=

ffiffiffiffi
N
p

, where r is the standard deviation across the sampled set of runs and N is the number of runs.

Fig. 6. Ground state (left) and first excited state (right) of a dodecahedron potential. Surfaces are constant probability density surfaces. For the ground state
we show w2

0 2 f10�11 ;10�9;10�7;10�5g and for the first excited state w2
1 2 f10�7;10�6;10�5;10�4g. Positive quadrant defined by x 6 0ky P 0 is cut out in

order to view the interior of the wavefunctions.
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Fig. 7. Compute time versus number of computational nodes on a log–log plot for the dodecahedron potential using the vertices defined in Eq. (7.3). The
dashed line is a linear fit to the data. Scaling exponent indicates that, in this case, the compute time scales as tcompute / N�0:91

nodes . Error bars are the standard
error determined by averaging over 10 runs, re ¼ r=

ffiffiffiffi
N
p

, where r is the standard deviation across the sampled set of runs and N is the number of runs.
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7.5. Dodecahedron potential

The previous two examples have spherical symmetry and hence it is not necessary to apply a fully 3d Schrödinger equa-
tion solver to them. We do so only in order to show scaling with computational nodes and percent error compared to ana-
lytically available solutions. As a nontrivial example of the broad applicability of the FDTD technique we apply it to a
potential that is a constant negative value of V = �100 inside a surface defined by a regular dodecahedron with the following
20 vertices
� 1
/
;� 1

/
;� 1

/

� �
; 0;� 1

/2 ;�1
� �

; � 1
/2 ;�1;0

� �
; � 1

/2 ; 0;�1
� �

; ð7:3Þ
where / ¼ ð1þ
ffiffiffi
5
p
Þ=2 is the golden ratio. The value �1 is mapped to the point n = 1 and the value 1 is mapped to the point

n = N in all three dimensions. As a result, the containing sphere has a radius of
ffiffiffi
3
p
ðN � 1Þ=2/.

In Fig. 6 we show the ground and first excited states extracted from a run on a 1283 lattice with a lattice spacing of a = 0.1,
an imaginary time step of Ds = 0.001 and particle mass of m = 1. On the left we show the ground state and on the right the
first excited state. We find that the energies of these two levels are E0 = �99.78 and E1 = �99.55. Note that for the first excited
state the position of the node surface can change during each run due to the random initial conditions used. In practice, the
node surface seems to align along one randomly chosen edge of one of the pentagons that make up the surface of the
dodecahedron.

In Fig. 7 we show the amount of time needed in seconds to achieve convergence of the dodecahedron ground state bind-
ing energy to a part in 106 as a function of the number of computational nodes for Nnodes 2 {4,8,16,32}. For this benchmark
we used a 5123 lattice with a constant lattice spacing of a = 0.1, an imaginary time step of Ds = 0.001 and particle mass of
m = 1. In Fig. 7 the error bars are the standard error determined by averaging over 10 runs, re ¼ r=

ffiffiffiffi
N
p

, where r is the stan-
dard deviation across the sampled set of runs and N is the number of runs. In all cases the ground state energy obtained was
E0 = �99.97. In Fig. 7 the extracted scaling slope is 0.91 meaning that the compute time scales as tcompute / N�0:91

nodes in this case.
7.6. Applying symmetry constraints to the FDTD initial wavefunction

One of the fundamental problems associated with using a single FDTD run to determine both the ground state and excited
states is that typically the excited states are much more extended in space than the ground state, particularly for potentials
with a ‘‘long range tail” like the Coulomb potential. For this reason it is usually difficult to obtain accurate energy eigenvalues
for both ground and excited states unless the lattice has an extremely fine lattice spacing and a large number of points in
each direction so that the dimension of the box is also large. In Section 7.3 we presented benchmarks for the Coulomb po-
tential on a 5123 lattice that had a dimension of 25.6 Bohr radii. As we found in that section, we were able to determine the
ground and first excited states to 0.2% and 2.4%. Improving the accuracy of the first excited state would require going to a
lattice with dimensions larger than 5123.

While this is possible with the parallelized code, there is a more efficient way to find excited states by applying symmetry
constraints to the initial wavefunction. For example, to find the 1p state of the Coulomb problem we can initialize the wave-
function as Winitial ¼AzWrandom as discussed in Section 4. In this case we explicitly project out the ground state wavefunction
since it is symmetric about the z-axis. Applying this method on a 2563 lattice with lattice spacing a = 0.2 and imaginary time
step Ds = 0.01 we find the first excited state energy to be E1 = �0.12507 which is accurate to 0.06%. At the same time we can
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extract the next excited state which is anti-symmetric about the z-axis (n = 2 state) finding in this case, E2 = �0.055360, cor-
responding to an accuracy of 0.4%.

The application of symmetry constraints can also allow one to pick out states with different orientations in a 3d potential
that breaks spherical symmetry. In Ref. [44] this technique was used to accurately determine the different heavy quarkoni-
um p-wave states corresponding to angular momentum Lz = 0 and Lz = ±1. Therefore, the ability to constrain the symmetry of
the initial FDTD wavefunction is a powerful technique.

7.7. Application of the multi-resolution technique

In this section we present benchmarks for the application of the multi-resolution technique to the Coulomb potential
problem. The current version of the code supports this feature by allowing users the option of saving the wavefunction at
the end of the run. The saved wavefunctions can then be read in and used as the initial condition for a subsequent run.
The saved wavefunctions can have a different resolution than the resolution of the new run and the code automatically ad-
justs by sampling/spreading out the wavefunction appropriately.

By using this technique we can accelerate the determination of the high accuracy energy eigenvalues and wavefunctions.
In Section 7.3 we found that using 32 computational nodes and a random initial wavefunction a 5123 run took approximately
1.3 hours. Scaling naively to a 10243 lattice, while keeping the lattice volume fixed, would take approximately 42 h. Using the
multi-resolution technique and bootstrapping from 1283 up to 10243 a high resolution ground state and energy eigenvalue
can be computed in approximately 45 min using the same 32 computational nodes. At the final resolution of a = 0.025 and a
lattice size of 25.6 Bohr radii the 10243 run gives E0 = �0.499632 which is accurate to 0.07%. Therefore, the multi-resolution
technique provides a performance increase of a factor of 50 compared to using random initial wavefunctions for all runs.

8. Conclusions and outlook

In this paper we have described a parallel FDTD algorithm for solving the 3d Schrödinger equation. We have shown that
for large 3d lattices the method gives a compute time that scales as tcompute / N�0:95�0:04

nodes . This final scaling coefficient and
associated error were obtained by averaging the three different scaling coefficients extracted for the Coulomb, harmonic
oscillator, and dodecahedron potentials. The crucial optimization that allowed us to achieve nearly ideal scaling was the
use of non-blocking sends/receives of the boundary data so that update of each node’s sub-lattice can proceed while com-
munication of the boundary information is taking place, providing for an ‘‘inside-out” update algorithm.

Additionally we introduced two novel techniques that can be used in conjunction with the FDTD method. First, we dis-
cussed the possibility of imposing a symmetry constraint on the initial wavefunction used for the FDTD evolution. The im-
posed symmetry constraint allows us to easily construct states that are orthogonal to the ground state and/or some other
excited states. Using this technique we can select states that have a certain symmetry, thereby allowing for extremely accu-
rate determination of the particular states we are interested in. Second, we introduced the ‘‘multi-resolution technique”
which simply means that we use the FDTD output wavefunctions from lower-resolution runs as the initial condition for
higher-resolution runs. Using this method we showed that we can efficiently ‘‘bootstrap” our way from small to large lat-
tices, thereby obtaining high-accuracy wavefunctions and eigenvalues in a fraction of the time required when using random
initial wavefunctions on large lattices.

The code developed for this paper has been released under an open-source GPL license [43]. An obvious next step will be
to extend the code to fully 3d partitions, which is in progress. Other areas of improvement include adding support for dif-
ferent types of boundary conditions and complex potentials [46].
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